On étudie la fréquence d’un événement grâce au graphique ci-dessous représentant \( 100 \) échantillons.
{"graphInit": {"range": [[-3, 101], [0.6599999999999999, 0.8]], "scale": [6.0, 3214.2857142857115], "axisOpacity": 0.5, "axisArrows": "->", "gridOpacity": 0.15, "gridStep": [100, 0.005], "tickStep": [1, 1], "labelStep": [1, 10], "xLabel": "N\u00b0 d'\u00e9chantillon", "yLabel": "Fr\u00e9quences"}, "label": [[[0.20000000000000018, 0.66], "0,66", "left", {"font-size": 13}], [[0.20000000000000018, 0.67], "0,67", "left", {"font-size": 13}]], "path": [[[[0, 0.73], [100, 0.73]]], [[[1, 0.67846], [1, 0.6815399999999999]], {"stroke": "red"}], [[[0.29999999999999993, 0.6799999999999999], [1.7000000000000002, 0.6799999999999999]], {"stroke": "red"}], [[[2, 0.72956], [2, 0.73264]], {"stroke": "red"}], [[[1.2999999999999998, 0.7311], [2.7, 0.7311]], {"stroke": "red"}], [[[3, 0.68936], [3, 0.6924399999999999]], {"stroke": "red"}], [[[2.3, 0.6909], [3.7, 0.6909]], {"stroke": "red"}], [[[4, 0.76086], [4, 0.76394]], {"stroke": "red"}], [[[3.3, 0.7624], [4.7, 0.7624]], {"stroke": "red"}], [[[5, 0.75686], [5, 0.75994]], {"stroke": "red"}], [[[4.3, 0.7584], [5.7, 0.7584]], {"stroke": "red"}], [[[6, 0.71146], [6, 0.71454]], {"stroke": "red"}], [[[5.3, 0.713], [6.7, 0.713]], {"stroke": "red"}], [[[7, 0.69586], [7, 0.69894]], {"stroke": "red"}], [[[6.3, 0.6974], [7.7, 0.6974]], {"stroke": "red"}], [[[8, 0.70496], [8, 0.70804]], {"stroke": "red"}], [[[7.3, 0.7065], [8.7, 0.7065]], {"stroke": "red"}], [[[9, 0.72736], [9, 0.73044]], {"stroke": "red"}], [[[8.3, 0.7289], [9.7, 0.7289]], {"stroke": "red"}], [[[10, 0.77176], [10, 0.77484]], {"stroke": "red"}], [[[9.3, 0.7733], [10.7, 0.7733]], {"stroke": "red"}], [[[11, 0.77646], [11, 0.77954]], {"stroke": "red"}], [[[10.3, 0.778], [11.7, 0.778]], {"stroke": "red"}], [[[12, 0.72816], [12, 0.73124]], {"stroke": "red"}], [[[11.3, 0.7297], [12.7, 0.7297]], {"stroke": "red"}], [[[13, 0.72856], [13, 0.73164]], {"stroke": "red"}], [[[12.3, 0.7301], [13.7, 0.7301]], {"stroke": "red"}], [[[14, 0.72336], [14, 0.72644]], {"stroke": "red"}], [[[13.3, 0.7249], [14.7, 0.7249]], {"stroke": "red"}], [[[15, 0.74286], [15, 0.7459399999999999]], {"stroke": "red"}], [[[14.3, 0.7444], [15.7, 0.7444]], {"stroke": "red"}], [[[16, 0.77846], [16, 0.78154]], {"stroke": "red"}], [[[15.3, 0.78], [16.7, 0.78]], {"stroke": "red"}], [[[17, 0.69606], [17, 0.69914]], {"stroke": "red"}], [[[16.3, 0.6976], [17.7, 0.6976]], {"stroke": "red"}], [[[18, 0.68886], [18, 0.69194]], {"stroke": "red"}], [[[17.3, 0.6904], [18.7, 0.6904]], {"stroke": "red"}], [[[19, 0.75886], [19, 0.76194]], {"stroke": "red"}], [[[18.3, 0.7604], [19.7, 0.7604]], {"stroke": "red"}], [[[20, 0.73656], [20, 0.73964]], {"stroke": "red"}], [[[19.3, 0.7381], [20.7, 0.7381]], {"stroke": "red"}], [[[21, 0.70476], [21, 0.70784]], {"stroke": "red"}], [[[20.3, 0.7063], [21.7, 0.7063]], {"stroke": "red"}], [[[22, 0.70626], [22, 0.70934]], {"stroke": "red"}], [[[21.3, 0.7078], [22.7, 0.7078]], {"stroke": "red"}], [[[23, 0.72836], [23, 0.73144]], {"stroke": "red"}], [[[22.3, 0.7299], [23.7, 0.7299]], {"stroke": "red"}], [[[24, 0.7147600000000001], [24, 0.71784]], {"stroke": "red"}], [[[23.3, 0.7163], [24.7, 0.7163]], {"stroke": "red"}], [[[25, 0.73236], [25, 0.73544]], {"stroke": "red"}], [[[24.3, 0.7339], [25.7, 0.7339]], {"stroke": "red"}], [[[26, 0.67846], [26, 0.6815399999999999]], {"stroke": "red"}], [[[25.3, 0.6799999999999999], [26.7, 0.6799999999999999]], {"stroke": "red"}], [[[27, 0.74546], [27, 0.74854]], {"stroke": "red"}], [[[26.3, 0.747], [27.7, 0.747]], {"stroke": "red"}], [[[28, 0.70706], [28, 0.71014]], {"stroke": "red"}], [[[27.3, 0.7086], [28.7, 0.7086]], {"stroke": "red"}], [[[29, 0.76486], [29, 0.76794]], {"stroke": "red"}], [[[28.3, 0.7664], [29.7, 0.7664]], {"stroke": "red"}], [[[30, 0.70136], [30, 0.70444]], {"stroke": "red"}], [[[29.3, 0.7029], [30.7, 0.7029]], {"stroke": "red"}], [[[31, 0.71166], [31, 0.7147399999999999]], {"stroke": "red"}], [[[30.3, 0.7132], [31.7, 0.7132]], {"stroke": "red"}], [[[32, 0.70646], [32, 0.70954]], {"stroke": "red"}], [[[31.3, 0.708], [32.7, 0.708]], {"stroke": "red"}], [[[33, 0.70336], [33, 0.70644]], {"stroke": "red"}], [[[32.3, 0.7049], [33.7, 0.7049]], {"stroke": "red"}], [[[34, 0.7470600000000001], [34, 0.75014]], {"stroke": "red"}], [[[33.3, 0.7486], [34.7, 0.7486]], {"stroke": "red"}], [[[35, 0.75026], [35, 0.75334]], {"stroke": "red"}], [[[34.3, 0.7518], [35.7, 0.7518]], {"stroke": "red"}], [[[36, 0.73806], [36, 0.74114]], {"stroke": "red"}], [[[35.3, 0.7396], [36.7, 0.7396]], {"stroke": "red"}], [[[37, 0.67846], [37, 0.6815399999999999]], {"stroke": "red"}], [[[36.3, 0.6799999999999999], [37.7, 0.6799999999999999]], {"stroke": "red"}], [[[38, 0.72046], [38, 0.72354]], {"stroke": "red"}], [[[37.3, 0.722], [38.7, 0.722]], {"stroke": "red"}], [[[39, 0.71996], [39, 0.72304]], {"stroke": "red"}], [[[38.3, 0.7215], [39.7, 0.7215]], {"stroke": "red"}], [[[40, 0.76706], [40, 0.7701399999999999]], {"stroke": "red"}], [[[39.3, 0.7686], [40.7, 0.7686]], {"stroke": "red"}], [[[41, 0.67846], [41, 0.6815399999999999]], {"stroke": "red"}], [[[40.3, 0.6799999999999999], [41.7, 0.6799999999999999]], {"stroke": "red"}], [[[42, 0.7530600000000001], [42, 0.75614]], {"stroke": "red"}], [[[41.3, 0.7546], [42.7, 0.7546]], {"stroke": "red"}], [[[43, 0.73786], [43, 0.7409399999999999]], {"stroke": "red"}], [[[42.3, 0.7394], [43.7, 0.7394]], {"stroke": "red"}], [[[44, 0.75086], [44, 0.7539399999999999]], {"stroke": "red"}], [[[43.3, 0.7524], [44.7, 0.7524]], {"stroke": "red"}], [[[45, 0.72046], [45, 0.72354]], {"stroke": "red"}], [[[44.3, 0.722], [45.7, 0.722]], {"stroke": "red"}], [[[46, 0.69246], [46, 0.6955399999999999]], {"stroke": "red"}], [[[45.3, 0.694], [46.7, 0.694]], {"stroke": "red"}], [[[47, 0.76046], [47, 0.76354]], {"stroke": "red"}], [[[46.3, 0.762], [47.7, 0.762]], {"stroke": "red"}], [[[48, 0.72956], [48, 0.73264]], {"stroke": "red"}], [[[47.3, 0.7311], [48.7, 0.7311]], {"stroke": "red"}], [[[49, 0.72516], [49, 0.72824]], {"stroke": "red"}], [[[48.3, 0.7267], [49.7, 0.7267]], {"stroke": "red"}], [[[50, 0.69416], [50, 0.69724]], {"stroke": "red"}], [[[49.3, 0.6957], [50.7, 0.6957]], {"stroke": "red"}], [[[51, 0.72546], [51, 0.72854]], {"stroke": "red"}], [[[50.3, 0.727], [51.7, 0.727]], {"stroke": "red"}], [[[52, 0.75236], [52, 0.75544]], {"stroke": "red"}], [[[51.3, 0.7539], [52.7, 0.7539]], {"stroke": "red"}], [[[53, 0.72216], [53, 0.72524]], {"stroke": "red"}], [[[52.3, 0.7237], [53.7, 0.7237]], {"stroke": "red"}], [[[54, 0.77606], [54, 0.7791399999999999]], {"stroke": "red"}], [[[53.3, 0.7776], [54.7, 0.7776]], {"stroke": "red"}], [[[55, 0.68326], [55, 0.68634]], {"stroke": "red"}], [[[54.3, 0.6848], [55.7, 0.6848]], {"stroke": "red"}], [[[56, 0.72376], [56, 0.7268399999999999]], {"stroke": "red"}], [[[55.3, 0.7253], [56.7, 0.7253]], {"stroke": "red"}], [[[57, 0.75056], [57, 0.75364]], {"stroke": "red"}], [[[56.3, 0.7521], [57.7, 0.7521]], {"stroke": "red"}], [[[58, 0.6875600000000001], [58, 0.69064]], {"stroke": "red"}], [[[57.3, 0.6891], [58.7, 0.6891]], {"stroke": "red"}], [[[59, 0.70456], [59, 0.7076399999999999]], {"stroke": "red"}], [[[58.3, 0.7061], [59.7, 0.7061]], {"stroke": "red"}], [[[60, 0.74836], [60, 0.75144]], {"stroke": "red"}], [[[59.3, 0.7499], [60.7, 0.7499]], {"stroke": "red"}], [[[61, 0.72856], [61, 0.73164]], {"stroke": "red"}], [[[60.3, 0.7301], [61.7, 0.7301]], {"stroke": "red"}], [[[62, 0.73116], [62, 0.73424]], {"stroke": "red"}], [[[61.3, 0.7327], [62.7, 0.7327]], {"stroke": "red"}], [[[63, 0.7207600000000001], [63, 0.72384]], {"stroke": "red"}], [[[62.3, 0.7223], [63.7, 0.7223]], {"stroke": "red"}], [[[64, 0.71056], [64, 0.7136399999999999]], {"stroke": "red"}], [[[63.3, 0.7121], [64.7, 0.7121]], {"stroke": "red"}], [[[65, 0.7631600000000001], [65, 0.76624]], {"stroke": "red"}], [[[64.3, 0.7647], [65.7, 0.7647]], {"stroke": "red"}], [[[66, 0.75496], [66, 0.7580399999999999]], {"stroke": "red"}], [[[65.3, 0.7565], [66.7, 0.7565]], {"stroke": "red"}], [[[67, 0.76986], [67, 0.77294]], {"stroke": "red"}], [[[66.3, 0.7714], [67.7, 0.7714]], {"stroke": "red"}], [[[68, 0.74036], [68, 0.74344]], {"stroke": "red"}], [[[67.3, 0.7419], [68.7, 0.7419]], {"stroke": "red"}], [[[69, 0.73116], [69, 0.73424]], {"stroke": "red"}], [[[68.3, 0.7327], [69.7, 0.7327]], {"stroke": "red"}], [[[70, 0.69576], [70, 0.69884]], {"stroke": "red"}], [[[69.3, 0.6973], [70.7, 0.6973]], {"stroke": "red"}], [[[71, 0.77846], [71, 0.78154]], {"stroke": "red"}], [[[70.3, 0.78], [71.7, 0.78]], {"stroke": "red"}], [[[72, 0.72816], [72, 0.73124]], {"stroke": "red"}], [[[71.3, 0.7297], [72.7, 0.7297]], {"stroke": "red"}], [[[73, 0.72566], [73, 0.7287399999999999]], {"stroke": "red"}], [[[72.3, 0.7272], [73.7, 0.7272]], {"stroke": "red"}], [[[74, 0.73326], [74, 0.73634]], {"stroke": "red"}], [[[73.3, 0.7348], [74.7, 0.7348]], {"stroke": "red"}], [[[75, 0.7530600000000001], [75, 0.75614]], {"stroke": "red"}], [[[74.3, 0.7546], [75.7, 0.7546]], {"stroke": "red"}], [[[76, 0.74846], [76, 0.75154]], {"stroke": "red"}], [[[75.3, 0.75], [76.7, 0.75]], {"stroke": "red"}], [[[77, 0.70476], [77, 0.70784]], {"stroke": "red"}], [[[76.3, 0.7063], [77.7, 0.7063]], {"stroke": "red"}], [[[78, 0.76266], [78, 0.76574]], {"stroke": "red"}], [[[77.3, 0.7642], [78.7, 0.7642]], {"stroke": "red"}], [[[79, 0.74216], [79, 0.74524]], {"stroke": "red"}], [[[78.3, 0.7437], [79.7, 0.7437]], {"stroke": "red"}], [[[80, 0.76456], [80, 0.76764]], {"stroke": "red"}], [[[79.3, 0.7661], [80.7, 0.7661]], {"stroke": "red"}], [[[81, 0.70376], [81, 0.70684]], {"stroke": "red"}], [[[80.3, 0.7053], [81.7, 0.7053]], {"stroke": "red"}], [[[82, 0.72666], [82, 0.7297399999999999]], {"stroke": "red"}], [[[81.3, 0.7282], [82.7, 0.7282]], {"stroke": "red"}], [[[83, 0.76676], [83, 0.76984]], {"stroke": "red"}], [[[82.3, 0.7683], [83.7, 0.7683]], {"stroke": "red"}], [[[84, 0.71956], [84, 0.72264]], {"stroke": "red"}], [[[83.3, 0.7211], [84.7, 0.7211]], {"stroke": "red"}], [[[85, 0.7479600000000001], [85, 0.75104]], {"stroke": "red"}], [[[84.3, 0.7495], [85.7, 0.7495]], {"stroke": "red"}], [[[86, 0.73926], [86, 0.74234]], {"stroke": "red"}], [[[85.3, 0.7408], [86.7, 0.7408]], {"stroke": "red"}], [[[87, 0.72946], [87, 0.73254]], {"stroke": "red"}], [[[86.3, 0.731], [87.7, 0.731]], {"stroke": "red"}], [[[88, 0.71336], [88, 0.71644]], {"stroke": "red"}], [[[87.3, 0.7149], [88.7, 0.7149]], {"stroke": "red"}], [[[89, 0.71036], [89, 0.71344]], {"stroke": "red"}], [[[88.3, 0.7119], [89.7, 0.7119]], {"stroke": "red"}], [[[90, 0.7460600000000001], [90, 0.74914]], {"stroke": "red"}], [[[89.3, 0.7476], [90.7, 0.7476]], {"stroke": "red"}], [[[91, 0.75346], [91, 0.75654]], {"stroke": "red"}], [[[90.3, 0.755], [91.7, 0.755]], {"stroke": "red"}], [[[92, 0.71346], [92, 0.71654]], {"stroke": "red"}], [[[91.3, 0.715], [92.7, 0.715]], {"stroke": "red"}], [[[93, 0.7369600000000001], [93, 0.74004]], {"stroke": "red"}], [[[92.3, 0.7385], [93.7, 0.7385]], {"stroke": "red"}], [[[94, 0.74736], [94, 0.75044]], {"stroke": "red"}], [[[93.3, 0.7489], [94.7, 0.7489]], {"stroke": "red"}], [[[95, 0.71406], [95, 0.71714]], {"stroke": "red"}], [[[94.3, 0.7156], [95.7, 0.7156]], {"stroke": "red"}], [[[96, 0.76806], [96, 0.7711399999999999]], {"stroke": "red"}], [[[95.3, 0.7696], [96.7, 0.7696]], {"stroke": "red"}], [[[97, 0.72416], [97, 0.72724]], {"stroke": "red"}], [[[96.3, 0.7257], [97.7, 0.7257]], {"stroke": "red"}], [[[98, 0.72976], [98, 0.7328399999999999]], {"stroke": "red"}], [[[97.3, 0.7313], [98.7, 0.7313]], {"stroke": "red"}], [[[99, 0.7218600000000001], [99, 0.72494]], {"stroke": "red"}], [[[98.3, 0.7234], [99.7, 0.7234]], {"stroke": "red"}], [[[100, 0.71096], [100, 0.71404]], {"stroke": "red"}], [[[99.3, 0.7125], [100.7, 0.7125]], {"stroke": "red"}]]}
Déduire de ce graphique une valeur approchée de la taille \( N \) des échantillons puis choisir
la valeur exacte la plus proche parmis les choix suivant.